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Abstract. The complexity of biological regulatory networks calls for the
development of proper mathematical methods to model their structures
and to obtain insight in their dynamical behaviours. One qualitative
approach consists in modelling regulatory networks in terms of logical
equations (using either Boolean or multi-valued discretisation).

In this paper, we propose a novel implementation of the generalised
logical formalism by means of Multi-valued Decision Diagrams. We show
that the use of this representation enables the development of efficient
algorithms for the analysis of specific dynamical properties of the reg-
ulatory graphs. In particular, we address the question of determining
conditions insuring the functionality of feedback circuits, as well as the
identification of stable states. Finally, we apply these algorithms to log-
ical models of T cell activation and differentiation.

Keywords: Regulatory networks, logical modelling, decision diagrams,
regulatory circuits, stable states.

1 Introduction

Modelling is a crucial step towards a functional understanding of the complex
interaction networks that govern fundamental cellular processes. In this respect,
in order to overcome the lack of quantitative data, logical approaches have been
successfully applied to a wide variety of genetic networks involved in cell differen-
tiation and pattern formation (for an introduction to logical modelling of genetic
networks, see [12,3]). However, when facing very large regulatory networks, even
logical abstraction leads to hard combinatorial problems. In other contexts, deci-
sion diagrams have been successfully applied to similar combinatorial problems,
in particular for symbolic model-checking (e.g. [2]). Here, we show how decision
diagrams can be used to represent sophisticated logical rules and enable the de-
velopment of efficient algorithms to determine the conditions insuring specific
dynamical roles for the different regulatory circuits, as well as to identify all the
stable states of large and complex systems, without explicitly constructing the
state transition graph and independently of any initial conditions.

Finally, we apply these algorithms to: (i) a model of Th1/2 differentiation [8]
and (ii) a model of the TCR signalling pathway [7].
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2 Logical Modelling of Gene Regulatory Networks

Our modelling approach leans on the generalised logical formalism initially de-
veloped by R. Thomas and collaborators [13,3]. In this context, a regulatory
network and its dynamics are both represented in terms of oriented graphs.

2.1 Regulatory Graphs

A regulatory network is defined as a labeled directed graph R = (G, A, K) called
regulatory graph, where:

– G = {g1, . . . , gn} is the set of nodes of the regulatory graph, representing
genes (or, more generally, regulatory components). Each gi ∈ G is associated
with its maximum expression level Maxi (Maxi ∈ N

∗) and its current
expression level xi (xi ∈ [0, Maxi]).

– A is the set of arcs. An arc (gi, gj) specifies that the gene gi regulates the
gene gj (when there is no possible confusion, we often write i for gi). A
regulatory graph may contain self-loops (e.g. a self-regulated gene gi with
an arc (i, i)).

For each gene gj , Reg(j) denotes the set of its regulators: i ∈ Reg(j) if
and only if (i, j) ∈ A.

If Maxi > 1, gi may have different effects onto a gene gj, depending on
the actual activity level of gi. Thus the arc (i, j) may be indeed a multi-arc
encompassing different interactions. The multiplicity of the arc (i, j) (i.e. the
number of its constitutive interactions), is denoted mi,j (1 ≤ mi,j ≤ Maxi).
A threshold θi,j,k (integer taking its values in [1, mi,j ]) is associated to the kth

interaction (denoted (i, j, k), k ∈ [1, mi,j ]), with 1 ≤ θi,j,1 < . . . < θi,j,mi,j ≤
Maxi. The kth interaction is active, when the level of its source gi lays
between the threshold of this interaction and that of the next interaction:
θi,j,k ≤ xi < θi,j,k+1 (by convention, θi,j,mi,j+1 = Maxi + 1).

– K = (K1, . . . , Kn) defines the dynamics of the system: each Ki is a multi-
valued logical function defining the evolution of the variable xi, depending
on the incoming active interactions of gi:

Ki :

⎛
⎝ ∏

j∈Reg(i)

[0, mj,i]

⎞
⎠ → [0, Maxi] .

For example, if g2 and g3 are regulators of g1 (Reg(1) = {2, 3}), K1(0, 1) is
the focal value of g1 when no interaction from g2 is active (i.e. x2 < θ2,1,1)
and the first interaction from g3 is active (θ3,1,1 ≤ x3 < θ3,1,2).

Note that the biologists often consider different types of interactions: activa-
tions (resp. repressions) have a positive (resp. negative) effect on their targets.
However the actual effect of an interaction often depends on the presence of
co-factors; its sign may even change depending on the context. In any case, the
signs of interactions can be derived from the logical functions.
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2.2 Dynamics of a Regulatory Graph

A state x of the regulatory graph is a n-tuple (x1, . . . , xn) of the expression
levels of the genes: x ∈

∏n
i=0[0, Maxi]. Given a state and for each gene gi, it is

then possible to determine the set of interactions operating onto gi (the active
interactions). We thus define the functions K′

i(x)s, which follow from the logical
functions Kis and directly depend on the current state x of the system:

K′
i :

∏n
j=1[0, Maxj ] −→ [0, Maxi]

x −→ Ki

(mj,i∑
k=1

k.1[θj,i,k,θj,i,k+1[(xj)

)

j∈Reg(i)

.

where 1 denotes the indicator function.
In the following, for simplicity, K′

i will be denoted Ki (omitting the prime
sign).

Given the current state x, the level of each gi tends toward the focal value
given by Ki(x). If this is greater (resp. lower) than xi (the current value of gi),
there is a call to increase (resp. decrease) by one the value of gi.

The dynamics of the regulatory graph can then be represented by a state
transition graph, where nodes represent states (giving the levels of the regula-
tory components) and arcs represent transitions between states (i.e. changes of
the values of some components). This state transition graph is computed by
means of the Kis, which indicate the transitions leading from the current state
to its following states (here, we consider an asynchronous updating, where each
transition corresponds to a change of a unique variable, see [3] for further details).
When facing large regulatory networks (i.e. dozens or hundreds of components),
combinatorial problems impede the full computation of state transition graphs.
In this paper, we assess the use of Decision Diagrams to handle this combinato-
rial problem for complex multi-valued logical models.

3 Regulatory Graphs and Multi-valued Decision
Diagrams

Multi-valued logical functions have a finite number of possible values, depending
on a set of decision variables, which also take a finite range of values. Such
functions can be represented using efficient data structures (see [1] for further
details).

Decision Diagrams are particularly promising in our context. Indeed, Garg
et al. have already used BDD to represent the whole state transition graph of
Boolean models of biological regulatory networks (their approach is contrasted
with ours in the conclusion).

In the following section, we recall the definitions at the basis of our novel
implementation of logical functions.
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3.1 Decision Diagrams

A Boolean function f : {0, 1}n → {0, 1} can be represented as a binary decision
tree where non-terminal nodes are labelled by a decision variable and where ter-
minal nodes are labelled either 1 (true) or 0 (false). The edge from a decision
node to its left child (resp. right child) corresponds to an assignment of the vari-
able to 0 (resp. to 1). Given a state x ∈ {0, 1}n (defining the values of n decision
variables), a unique path from the root to a terminal node (a leaf) is defined.
Along this path, the child chosen for each non-terminal node is labelled with
the value of the corresponding variable in state x. The terminal node reached
through this path gives the value of f(x).

Reduced Binary Decision Diagrams (RBDDs) have been introduced to im-
prove this representation, which requires exponential space (2n+1 − 1 nodes).
RBDDs are obtained applying two reduction rules: (i) merge isomorphic sub-
graphs and (ii) bypass nodes whose children are the roots of isomorphic subdi-
agrams. The resulting structure is then a rooted directed acyclic graph. Bryant
further extended this representation by the use of a fixed variable ordering which
leads to canonical representations of logical functions. The resulting graphs are
called Reduced Ordered BDDs (ROBDDs), commonly referred to as BDDs. Note
that the size of BDDs may depend on the variable ordering (see Figure 1 for an
illustration of the impact of the ordering).

BDDs have been generalised to the multi-valued case: a discrete multi-valued
function can be represented by a Multi-valued Decision Diagram (MDD), where
decision nodes may have as many children as the number of their possible values
and the terminal nodes are labelled by the values of the function (see Figure 1
for an illustration) [6]. The ordering and reduction rules defined for BDDs apply
also to this multi-valued generalisation.

3.2 Use of MDDs to Represent Logical Functions

The functions Kis, which take their values in [0, Maxi], can be represented as
MDDs, with the regulators of gi as decision variables. During the simulation (i.e.
the construction of the state transition graph), the focal value of a gene gi is
obtained in O(#Reg(i)) in the worst case, traversing the corresponding MDD.
This data structure thus definitely improved the performance of GINsim, our
software implementing the logical formalism [5].

Moreover the representation of the Kis by means of MDDs greatly facilitates
the analysis of specific dynamical properties as showed in the following sections.

In the sequel, for simplicity, diagrams will be named after the multi-valued
functions they represent. For a given regulatory graph, an arbitrary ordering on
the set of variables is used consistently for all the related MDDs.

4 Analysis of Regulatory Circuits

In what follows, we consider elementary circuits (circuits, for short), i.e. finite
closed paths in the regulatory graph, where all the nodes are distinct.
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Fig. 1. Example of a simple logical regulatory graph with its MDD representation: (a)
The regulatory graph, the table defining the function KC together with its decision
tree representation. (b) The reduced MDDs (considering the two different ordering of
xA and xB) representing KC , with xA and xB as decision variables and the values of
KC labelling the leaves.

It is well established that complex dynamical behaviours of regulatory net-
works are related to their topological structures. In particular, the roles of regu-
latory circuits have been emphasised by R. Thomas, who proposed that negative
circuits are required to observe oscillatory behaviours, whereas positive circuits
are necessary for multistationarity (the sign of a circuit is given by the product of
the signs of its interactions) [11]. Proofs of these conditions have been presented
within different modelling formalisms [10,9]. But the sole presence of a circuit
in a network does not guarantee the appearance of the corresponding dynamical
behaviour. The circuit must be functional [11]. Figure 2 illustrates how the
regulators of one of its components can prevent a circuit from generating the
expected behaviour. We thus define the context of functionality of a circuit as
a set of constraints on the values of the external inputs acting on that circuit.
Our definition of functionality context may serve as a basis to formally prove
the relationship between the functionality of a circuit and the corresponding
dynamical properties.

In the multi-valued case, circuits containing multiple interactions can be split-
ted into multiple “elementary circuits” and considered separately. In the sequel
we restrict ourselves to the case of single interactions to simplify the notation:
the threshold of an interaction can be thus denoted θi,j (instead of θi,j,k).
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Fig. 2. Illustration of the influence of external inputs on the dynamics of a regulatory
circuit. In the regulatory graphs of panels (a) and (d), activations are depicted by
normal arrows whereas inhibitions are depicted by blunt arrows. (a) A simple positive
circuit affected by a negative input. (b) Values for KA and KB : two situations arise,
depending on the value of xC (component A regulated by both B and C). (c) The two
possible behaviours, depending on xC : for xC = 0 there are two stable states (top),
while a unique stable state exists for xC = 1 (bottom). (d,e,f) A simple negative circuit
affected by a positive input; oscillations only appear in the absence of the input.

4.1 Functionality Context and Sign of an Interaction

In general, we say that an interaction (i, j) is functional when it affects the
focal value of its target: Kj(x1, . . . , θi,j − 1, . . . , xn) �= Kj(x1, . . . , θi,j , . . . , xn).
In the context of a circuit, this change must further affect the activity of the
next interaction in the circuit (the threshold of the next interaction must be
crossed to reach the focal value). This additional constraint is only relevant for
multi-valued genes, as it is always satisfied in the Boolean case.

In the following, we define the functionality of the interaction (i, j) and its
context, that is the set of constraints upon the regulators of j (target of the
considered interaction).

Definition 1. Let consider an interaction (i, j), member of a circuit C with a
threshold θi,j. Let (j, k) be the next interaction in C, with a threshold θj,k. The
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interaction (i, j) is said to be functional in C if and only if there exists a variable
assignment for all regulators of gj except gi such that:

Kj(x1, . . . , xi−1, θi,j − 1, . . . , xn) < θj,k ≤ Kj(x1, . . . , xi−1, θi,j , . . . , xn), (1)
or Kj(x1, . . . , xi−1, θi,j , . . . , xn) < θj,k ≤ Kj(x1, . . . , xi−1, θi,j − 1, . . . , xn). (2)

The functionality context of the interaction (i, j) in C is defined as the subset
of Πn

k=1[0, Maxk] of n-tuples such that the values of the regulators of gj let the
interaction (i, j) functional (i.e. Equation (1) or (2) satisfied). The interaction
is thus functional if its context is not empty.

Definition 1 establishes that the interaction (i, j) is functional provided its ac-
tivity affects the activity of the following interaction of the circuit (going out
gj). This depends on the values of Kj , considering values θi,j − 1 and θi,j for gi

and all possible values of other regulators of gj .
We can then define the sign of an interaction, as 0 when it is not functional,

or 1 (resp. -1) when it is functional and leads to an increase (resp. a decrease)
of the focal value of its target.

Definition 2. Let us consider consecutive interactions (i, j) and (j, k) in a cir-
cuit C. Given a variable assignment for all regulators of gj (except gi), the sign
of (i, j) in C is given by Γi,j, defined as follows:

Γi,j(x) =

⎧⎨
⎩

1 if Equation (1) holds,
−1 if Equation (2) holds,
0 otherwise,

where x is a state (x ∈ Πn
k=1[0, Maxk]), for which the values corresponding to

the regulators of gj (except that of gi) equal the given assignment.
We say that (i, j) has a positive effect when Γi,j(x) = 1, a negative effect when

Γi,j(x) = −1 and no effect otherwise.

The construction of the MDD representing Γi,j for a given interaction (i, j) is
illustrated in Figure 3(a-b). The algorithm is given as supplementary material.
The leaves of the MDD give the sign of (i, j), depending on the path followed
to reach them. This path defines the conditions on the values taken by the
regulators of gj.

Remark 1. It may happen that the sign of an interaction (i, j) is context depen-
dent, that is, for an assignment of the regulators of gj (except gi) the sign of
the interaction is positive and for another assignment, it is negative. To sim-
plify the explanations in the next section (that defines the functionality of a
whole circuit), we exclude such a case, which is infrequent in genetic regulatory
networks.

4.2 Functionality Context and Sign of a Regulatory Circuit

We now consider the case of a whole elementary circuit. Definition 3 formalises
the functionality context of a circuit, as well as its sign, depending on its con-
stitutive interactions.
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First, we will consider the case of circuits which do not contain smaller cir-
cuit(s), or shortcuts. A circuit C = (c1, c2, . . . , cr) (with r + 1 = 1) contains a
shortcut if there exists ci which regulates ck, with k �= i + 1 (ci ∈ C and ck ∈ C).
The simplest example of such a shortcut is an auto-regulation of a member of
the circuit. Then, we extend the definition of the functionality to the general
case (with, for simplicity, the restriction that no interaction of the circuit has a
context dependent sign).

Definition 3. The functionality context of a circuit with no shortcut is defined
as the intersection of the functionality contexts of its constitutive interactions;
the circuit is thus functional when this intersection is not empty (implying that
all its interactions are functional). The sign of the circuit C = (c1, c2, . . . , cr) is
defined as the product of the signs of its interactions:

ΓC(x) =
i≤r∏
i=1

Γci,ci+1(x).

Definition 4. Let consider a circuit C = (c1, c2, . . . , cr) which contains short-
cut(s). Its functionality context ΓC ⊆ Πn

k=1[0, Maxk] is defined as the intersec-
tion of the contexts of its interactions further restricted to insure that, for all ci

acting on a component ck of C different from ci+1, and an assignment ȳ of all
variables but ci:

(y1, . . . , θi,i+1 − 1, . . . yn) ∈ ΓC ⇐⇒ (y1, . . . , θi,i+1, . . . yn) ∈ ΓC .

When the above condition does not hold, all the tuples (y1, . . . , xi, . . . yn) are
removed from ΓC (for all possible values xi of ci). The circuit C is functional if
its functionality context ΓC is not empty. Its sign is defined as the product of the
signs of its interactions.

The above definition guarantees that, given a fixed assignment of all other vari-
ables compatible with ΓC (the functionality context of C), both states where ci

level is less or equal to θi,i+1 (the threshold of the interaction of C going from ci

to ci+1) are in ΓC (and this insures the functionality of this interaction).
The determination of the function ΓC requires two operations: (i) the de-

termination of all the Γi,j , giving the signs of single interactions; and (ii) the
computation of their product.

Assume that the diagrams giving the signs of the interactions composing the
circuit have been determined. The MDD giving the global sign of the circuit
is built as a product of the signs of the individual interactions. This product
is performed by means of the combination of MDDs Γ1 and Γ2, applying the
following rules (see Figure 3(c) for an illustration):

– if Γ1and Γ2 are reduced to single nodes, the product is a node, its value
being the product of those of Γ1and Γ2;

– else if Γ1 (resp Γ2) is a single node with value 1, the result is Γ2 (resp. Γ1);
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– else if Γ1 and Γ2 roots are internal nodes with the same order (hence cor-
responding to the same decision variable), the result is a root of this order,
and its children are recursive combinations of those of Γ1 and Γ2 roots;

– otherwise, if Γ2 is a single node with value (−1) or if the root of Γ1 has an
order less than that of the root of Γ2 (or symmetrically), the result is a root
such that:

• its order is the order of the root of Γ1;
• its children are recursive combinations of Γ2 with those of Γ1.

Finally, in the case of shortcuts in the circuit, as the sign of the circuit C
may depend on the levels of members of C, this dependancy is properly removed
while ensuring that every member of the circuit can cross its threshold. Further
details can be found in the supplementary material.
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Fig. 3. Determination of the functionality context (and sign) of a circuit: (a) A reg-
ulatory network encompassing a circuit and decision diagrams of the logical functions
Ks for the three members of the circuit. Below the logical functions Ks, pairwise com-
parisons of the leaves delineate the signs of the interactions targeting the members of
the circuit. (b) MDDs giving the signs Γ s of the interactions. (c) Combinations of the
MDDs to determine ΓC, the sign of the circuit. The paths in ΓC leading to non-zero
leaves give the functionality context of the circuit. For sake of clarity, the diagrams are
not fully reduced.
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5 Efficient Determination of Logical Stable States

In this section, we show how the MDD representation of the logical functions
Kis can be used to determine all the logical stable states of a parameterised
regulatory graph. A stable state x is such that the focal value of each gene is
identical to its current value:

x ∈ Πn
i=1[0, Maxi] is stable iff Ki(x) = xi, ∀i ∈ {1, . . . n}. (3)

The algorithm to determine the stable states encompasses two main steps.
First, for each gene gi, a MDD Si is constructed, which gives the logical stability
condition depending on its value xi and on those of its regulators (box (b) in
Figure 4). Second, the resulting MDDs are combined as described in 4.2.

For a gene gi, the first step amounts to transform the MDD representing the
logical function Ki. The decision variable xi is properly added and the leaves
values are set to 0 for a change (a decrease or an increase), or to 1 for no change.
The resulting MDD implements a logical function with value 1 (true) when the
node is stable, 0 (false) otherwise:

Si :
∏

j∈Reg(i)

[0, Maxj ] → {0, 1},

with
Si =

{
0 if Ki(x) �= xi,
1 if Ki(x) = xi.

To simplify the notation, Si(x) and Ki(x) are considered beyond the sole
regulators of i, to encompass all components of x. The diagrams Si are then
pairwise combined (the combination of Si and Sj is the representation of the
logical stability condition for both gi and gj). As for the determination of the
sign of a circuit, each combination amounts to the product of the corresponding
MDDs. Ultimately, the diagram S1...n defines the stability condition for the
whole set of genes, hence the paths leading to 1-leaves give the stable states (see
Figure 4).

6 Application to Regulatory Networks Controlling T Cell
Activation and Differentiation

We have applied our novel analysis tools to two logical models recently pub-
lished: (i) the first (multi-valued) model accounts for the differentiation of naive
T-helper lymphocytes into two subtypes, called Th1 and Th2, controlling cellu-
lar and humoral immune responses, respectively [8]; (ii) the second, a Boolean
model, integrates the information available on T cell receptor (TCR) signalling,
taking into account several co-acting signals [7]. These two models are closely
related, as NFAT, one of the outputs of the TCR signalling pathway, is one of
the activators of the IFN-γ pathway.
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Fig. 4. Illustration of the stable state determination: (a) a simple regulatory graph
and the associated logical functions; (b) the diagrams S giving the constraints for each
gene to be stable; (c) the combination of the diagrams to obtain SABC . For SABC , two
paths lead to the 1-leaf (they are depicted in bold), indicating that the regulatory graph
has two stable states: (xA, xB , xC) = (0, 0, 1) and (1, 1, 0). Note that, for clearness, the
diagrams are not fully reduced.

6.1 T Cell Differentiation

The regulatory graph is shown in Figure 5. The graph encompasses 17 regula-
tory components, including five cytokines or intercellular signalling molecules,
the interferons beta and gamma, and the interleukines 4, 12 and 18, the cor-
responding receptors, five mediatory molecules, SOCS1, IRAK, and STAT1,
4 and 6, as well as two transcription factors, Tbet and GATA3. All compo-
nents but four are modelled by Boolean variables. The cascade involving IFN-
γ, its receptor, STAT1 and Tbet are modelled by ternary variables as cells
presenting two different levels of activation of the IFN-γ pathway have been
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Fig. 5. The network controlling Th1/2 differentiation. All regulatory components but
four are modelled by Boolean variables. The remaining four (rectangular nodes) are
modelled by ternary variables. The first two nodes layers denote cytokines and their re-
ceptors. Normal arrows represent activations, whereas blunt arrows represent inhibitory
effects. Note that the original model of Mendoza encompasses two variants, including
an auto-activation for GATA3 (murine cells) or not (human cells).

experimentally observed. The experimental information in support of this graph,
as well as the delineation of the logical parameters can be found in the original
article published by Mendoza [8]. The logical model can be downloaded in a GIN-
sim dedicated XML format from the address http://gin.univ-mrs.fr/GINsim/.

The algorithm presented in Section 5 takes less than a second to identify the
four stable states reported by Mendoza:

– a Th0 state without any active component, corresponding to the naive, un-
differentiated cell;

– a Th1 state where IFN-γ, IFN-γR, STAT1, SOCS1 and Tbet are expressed;
– a Th1* state, similar to the previous one, but with higher expression levels

for IFN-γ, and T-bet (the expression of SOCS1 prevents IFN-γR and STAT1
from showing a higher expression level);

– a Th2 state showing expression of IL4, IL4R, STAT6 and GATA3.

Turning to the circuit functionality analysis, the algorithm described in Sec-
tion 4 leads to the identification of five functional circuits among the 22 circuits
found in the regulatory graph for the human model variant shown in Figure 5.
All of these functional circuits are positive, which is consistent with the fact that
this network is predominantly involved in the control of cell differentiation.
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– The auto-regulation of T-bet is functional in the absence of both GATA3
and STAT1, or yet in the presence of a medium level of STAT1. Note that
this circuit involves two different levels of Tbet and can thus enable the
presence of up to three stable states, each characterized by one of the possible
expression levels of Tbet.

– The (GATA3, IL4, IL4R, STAT6) circuit is functional in the absence of
STAT1, SOCS1 and T-bet. This circuit ensures a coupling between the ex-
pressions of GATA3, IL4, IL4R and STAT6. In the murine cells, this circuit
is not functional, replaced by the GATA3 auto-activation (functional in the
absence of Tbet and STAT6).

– The (GATA3, T-bet) circuit is functional in the presence of STAT1 and
STAT6. This cross-inhibitory circuit ensures the exclusive expressions of the
transcriptional regulators Tbet and GATA3, characteristic of Th1 and Th2
responses, respectively. In the absence of the activators of Tbet and GATA3
(STAT1 and STAT6), the cell remains trapped in the naive state.

– The last two functional circuits involve IFN-γ, IFN-γR, STAT1, SOCS1,
STAT6, and STAT4, plus a few additional components. Their contexts of
functionality are relatively restrictive (absence of Tbet and IFNbR, and
presence of IL12 and IL4, plus the absence of GATA3 in one of the two
cases).

On the basis of the results of the circuit functionality analysis, it is possible
to delineate specific perturbations affecting the stable state configuration.

6.2 T Cell Activation

The model recently published by Klamt et al. for T cell activation encompasses 40
regulatory components, hierarchically organised, from cell membrane receptors
(TCR, CD8 and CD45) to transcription factors (CRE, AP1, NF-κB, NFAT)
[7]. After adding three functional auto-activations on the input nodes (TCR,
CD8 and CD45), our stable state identification tool identifies seven alternative
stable states, each corresponding to a specific input configuration. Strikingly,
the input configuration with all receptors permanently activated does not lead
to any stable state, but rather to a complex periodic behaviour. However, in
normal physiological situations, one should expect only transient activations of
these receptors, thus ultimately leading to a unique stable state, corresponding
to the resting situation.

In this respect, cross-talks between the signalling cascades may play an im-
portant role. Here, our circuit functionality analysis tool can be useful. Apart
from the auto-activations purposively added on each of the three receptors, its
application to this system leads to the identification of only one negative func-
tional circuit out of nine: (ZAP70, cCBL). Under full stimulation (i.e. in the
presence of all three inputs), this circuit enables an oscillatory behaviour of
the involved regulatory components. These oscillations propagate downstream,
leading to cyclic expression of the transcription factors (outputs of this model).
In physiological situations, these oscillations must abort following the natural
receptor inactivation.
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7 Conclusion

In this paper, we have shown how Multi-valued Decision Diagrams (MDDs) can
be used to encode the logical functions governing the behaviours of individual
nodes in qualitative models of complex regulatory networks. Leaning on this
encoding, we have further delineated two algorithms, one to efficiently determine
all stable states of a logical model, the other to compute the functionality context
of each regulatory circuit, in terms of conditions on the values of the variables
acting on this circuit.

As mentionned above, Garg et al. have already represented Boolean state
transition graphs in terms of BDD. They considered the particular case of net-
works where genes are expressed provided all their inhibitors are absent and at
least one of their activators are present [4]. Based on their BDD representation,
the authors propose an efficient method to determine stable states, and even
more complex attractors. In contrast, our proposal refer to multi-valued logical
networks where the logical functions can be more subtle. More importantly, our
approach is based on a Decision Diagram representation of the transition func-
tions for each node. Stable states, as well as feedback circuit functionality, are
then determined through proper combinations of these diagrams.

On the basis of a prototype implementation of these algorithms, we are
presently analysing a series of regulatory models (Boolean or multi-valued) in-
volved in cell differentiation and pattern formation, encompassing dozens of regu-
latory components, involved in hundreds of regulatory circuits. For each of these
systems, the delineation of all stable states and the computation of feedback
circuit functionality domains took less than a second on a standard computer.

In section 6, we have briefly presented the results obtained for two recently
published logical models: (i) a multi-valued model of the network controlling
T-helper lymphocytes differentiation; (ii) a Boolean model encompassing some
of the main signalling cascades controlling the activation of T cells.

At this point, we believe that it should be possible to further improve the
performance of our algorithms. In particular, a proper ordering of decision vari-
ables can have a significant impact on the overall sizes of the MDDs (note that
a common ordering of the variables must be defined to ensure a coherent combi-
nation of the MDDs). Similarly, we observed that the order of consecutive MDD
combinations (e.g. in the course of the identification of all stable states) has a
strong effect on the overall performance.

Finally, this MDD representation opens interesting prospects for the modelling
of combinations of mutations or other perturbations through a rewriting of the
MDDs describing the wild-type model.

Supplementary Material

Further details on the algorithms, as well as on the T-helper cell differentiation
and activation models are available at the following URL:
http://gin.univ-mrs.fr/GINsim/publications/naldi2007.html.
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